

DPP No. 3

Total Marks: 33

Max. Time: 34 min.

Topic: General Organic Chemistry

Type of Questions

M.M., Min.

Single choice Objective ('-1' negative marking) Q.1 to Q.4

(3 marks, 3 min.) [12, 12]

Multiple choice objective ('-1' negative marking) Q.5 to Q.6

(4 marks, 4 min.) **[8.81**

Comprehension ('-1' negative marking) Q.7 to Q.9

(3 marks, 3 min.) [9, 9]

Subjective Questions ('-1' negative marking) Q.10

(4 marks 5 min.) [4, 5]

1. The correct order of resonance energy of following molecules is:

(A)
$$p > q > r > s$$

(C)
$$r > s > q > p$$

(D)
$$q > s > r > p$$

- 2. Select the correct statement/s?
 - (A) All canonical forms always contribute equally to the resonance hybrid.
 - (B) In both ethanamine and ethenamine nitrogen is sp³ hybridised.
 - (C) All 'C-O' bond length in carbonate dianion are equal.
 - (D) CH₂=C=O does not exhibit resonance because it is not a conjugated system.
- 3. The most stable resonating structure is:

(A)
$$H_2N - CH - CH = CH - OCH_3$$

(B)
$$H_2N = CH - CH = CH - OCH_3$$

(C)
$$H_2N - CH = CH - CH = \overset{\bigoplus}{OCH_3}$$

(D)
$$H_2^{\oplus}N = CH - CH = OCH_3$$

4. Hyperconjugation phenomenon is possible in :

(A)
$$CH_3 - C - CH = CH_2$$

 CH_3

(B)
$$CH_2 = CH_2$$

(C)
$$C_6H_5 - CH = CH_2$$

(D)
$$CH_3 - CH_2 - CH = CH_3$$

5.* Which of the following is/are resonating structures of diazomethane (CH₂N₂).

(B)
$$CH_2 = N^+ = N^-$$
 (C) $\overline{C}H_2 - N^+ \equiv N$

$$(C) \ \overline{C}H_2 - \overrightarrow{N} \equiv N$$

6.* In which case the unshared pair (lone pair) of electrons are delocalized.

(B)
$$H_2C = \ddot{N} - CH_3$$
 (C) $H_2C = \ddot{N} = \ddot{N}$: (D) $\vdots \ddot{N} = \ddot{N} = \ddot{N}$:

Comprehension # (Q.7 to Q.9)

Hyperconjugation describes the orbital interactions between the π -systems and the adjacent C – H σ bond in organic compounds. Hyperconjugation is also called as Baker and Nathan effect. The necessary and sufficient conditions for the hyperconjugation are:

- (i) Compound should have at least one sp²-hybrid carbon of either alkene, carbocation or alkyl free radical.
- (ii) sp³ hybridised α -carbon with respect to sp²-hybrid carbon should have at least one hydrogen.
- 7. Hyperconjugation is possible in which of the following species?

(A)
$$CH_3 - \overset{\Theta}{C}H_2$$
 (B) $C_6H_5 - CH_3$ (C) $CH_2 = CH_2$ (D) $CH_3 - \overset{\Theta}{C} - CH_2$ CH_3 CH_3

Which of the following carbocation will show highest number of hyperconjugation structures? 8.

9. Which of the following alkenes will show maximum number of hyperconjugation forms?

(C)
$$H_{3}C$$
 $C=C$ CH_{3}

10. Find the total number of the position where positive charge can be delocalized by true resonance

$$\begin{array}{c} CH_2 \\ H_3-CH-CH=CH-C- \end{array} \hspace{-2mm} \hspace{-2mm$$

(Excluding the given position)

Answer Kev

DPP No. #3

1.

6.

(A,C,D)

7.

(C) (B)

(C)

(A)

(D)

10.

2

(B,C)

8.

Hints & Solutions

DPP No. #3

1. The resonance energy of fused system increases as the number of principal canonical forms increases.

In 'S' more number of canonical forms have stable kekule arrangement of 6π electrons in all the three rings as compared to anthracene.

- 4. $CH_3 CH_2 CH = CH_2$ has two α -hydrogen for hyperconjugation.
- **6.** Lone pair of electrons of $H_aC = \ddot{N} CH_a$ is in sp² hybrid orbital.

10.
$$CH_3 - \overset{+}{C}H = CH = CH = \overset{-}{C}H_2$$

$$CH_3 - CH = CH - CH = C - \overset{-}{C}H_2$$

